Regulation and functional analysis of \textit{ZmDREB2A} in response to drought and heat stresses in \textit{Zea mays} L

Feng Qin1, Masayuki Kakimoto2, Yoh Sakuma1,2, Kyonoshin Maruyama1, Yuriko Osakabe1,2, Lam-Son Phan Tran1, Kazuo Shinozaki3,4 and Kazuko Yamaguchi-Shinozaki1,2,4,*

1 Biological Resources Division, Japan International Research Center for Agricultural Sciences (JIRCAS), 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan,
2 Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan,
3 RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan, and
4 Core Research for Evolutilional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Received 4 August 2006; revised 2 November 2006; accepted 20 November 2006.
* For correspondence (fax +81 29 838 6643; e-mail kazukoys@jircas.affrc.go.jp).

Summary

DREB1/CBFs and DREB2s are transcription factors that specifically interact with a \textit{cis}-acting element, DRE/CRT, which is involved in the expression of genes responsive to cold and drought stress in \textit{Arabidopsis thaliana}. The function of DREB1/CBFs has been precisely analyzed and it has been found to activate the expression of many genes responsive to cold stress containing a DRE/CRT sequence in their promoters. However, the regulation and function of DREB2-type transcription factors remained to be elucidated. In this research, we report the cloning of a DREB2 homolog from maize, \textit{ZmDREB2A}, whose transcripts were accumulated by cold, dehydration, salt and heat stresses in maize seedlings. Unlike Arabidopsis DREB2A, \textit{ZmDREB2A} produced two forms of transcripts, and quantitative real-time PCR analyses demonstrated that only the functional transcription form of \textit{ZmDREB2A} was significantly induced by stresses. Moreover, the \textit{ZmDREB2A} protein exhibited considerably high transactivation activity compared with DREB2A in Arabidopsis protoplasts, suggesting that protein modification is not necessary for \textit{ZmDREB2A} to be active. Constitutive or stress-inducible expression of \textit{ZmDREB2A} resulted in an improved drought stress tolerance in plants. Microarray analyses of transgenic plants overexpressing \textit{ZmDREB2A} revealed that in addition to genes encoding late embryogenesis abundant (LEA) proteins, some genes related to heat shock and detoxification were also upregulated. Furthermore, overexpression of \textit{ZmDREB2A} also enhanced thermotolerance in transgenic plants, implying that \textit{ZmDREB2A} may play a dual functional role in mediating the expression of genes responsive to both water stress and heat stress.

Keywords: transcription factor, DRE/CRT, \textit{ZmDREB2A}, drought tolerance, heat stress.

Introduction

Plant growth and productivity are affected by various abiotic stresses such as heat, cold, drought and high salinity, and plants must respond and adapt to these stresses in order to survive. Exposure to these stresses induces various biochemical and physiological changes in the process of acquiring stress tolerance. A number of genes have been described that respond to these stresses at the transcriptional level (Bartels and Sunkar, 2005; Thomashow, 1999; Yamaguchi-Shinozaki and Shinozaki, 2006; Zhu, 2002). The \textit{cis-} and \textit{trans-}acting factors involved in the expression of stress-responsive genes have been extensively analyzed as a means to elucidate the molecular mechanisms of gene expression in response to the stresses of cold, drought and high-salinity (Yamaguchi-Shinozaki and Shinozaki, 2005). The dehydration-responsive element (DRE) containing the core sequence A/GCCGAC was identified as a \textit{cis}-acting...
promoter element which regulates gene expression in response to drought, high salinity and cold stresses in Arabidopsis (Yamaguchi-Shinozaki and Shinozaki, 1994). A similar motif was identified as the CRT (C-repeat) and LTRE (low-temperature-responsive element) in cold-inducible genes (Baker et al., 1994; Jiang et al., 1996). Complementary DNAs encoding DRE-binding proteins, CBF/DREBs and DREBs, have been isolated (Liu et al., 1998; Stockinger et al., 1997) and their corresponding gene products showed significant sequence similarity to the conserved DNA-binding domain found in ERF/AP2 proteins. Functional analyses of DREB1/CFB transcription factors have established them as important components of the cold stress response in Arabidopsis (Jaglo-Ottosen et al., 1998; Liu et al., 1998). In Arabidopsis DREB1/CFB genes are induced by cold stress and their gene products activate the expression of >40 genes in the DREB1/CFB regulon (Fowler and Thomashow, 2002; Maruyama et al., 2004). The expression of this regulon results in an improved tolerance not only to freezing, but also to drought and high salinity. DREB1/CFB orthologs have been reported and shown to function in cold stress tolerance from various species, such as Brassica napus, tomato, barley, maize, rice, rye, and wheat (Choi et al., 2002; Dubouzet et al., 2003; Gao et al., 2002; Jaglo et al., 2001; Qin et al., 2004; Skinner et al., 2005; Xue, 2002).

Although DREB1/CFB and DREB2 share a high homology in the ERF/AP2 DNA-binding domain and can bind the same DRE core sequence (A/GCCGAC), these two proteins differentially transmit cold or dehydration stress. Expression of the DREB1/CFB genes is induced to high levels specifically in response to a low-temperature stimulus. In contrast, Arabidopsis DREB2A is gradually induced by dehydration and high salinity stresses over 24 h, but hardly responds to cold stress (Liu et al., 1998; Sakuma et al., 2002). Multiple amino acid sequence alignment of DREB1 and DREB2 proteins shows that the sequences of PKK/RAPGrxKF-xETRHP and DSARWR, which are located upstream and downstream of the DNA-binding domain, are conserved in DREB1-type transcription factors. These sequences are designated as DREB1/CFB ‘signature sequences’ (Jaglo et al., 2001) and are absent in DREB2-type proteins. However, a serine- and threonine-rich region adjacent to the DNA-binding domain is found to be unique to the DREB2A protein. Overexpression of DREB2A in transgenic plants does not activate downstream genes under normal growth conditions, which implies that post-translational regulation may be involved in its activation (Liu et al., 1998). Recently, a negative regulatory domain was identified in the central region of DREB2A and deletion of this region transforms DREB2A to a constitutive active form (DREB2A CA; Sakuma et al., 2006a,b). Transgenic Arabidopsis overproducing DREB2A CA showed increased expression of many stress-responsive genes and improved tolerance to drought stress (Sakuma et al., 2006a).

Because of the significance of gene regulation under dehydration and high salinity stress, multiple research efforts have been initiated to isolate drought- and osmotic stress-inducible transcription factors in other species. In rice, Oryza sativa L., one homolog, named OsDREB2A, was identified as a DREB2-type protein. Similar to Arabidopsis DREB2A, OsDREB2A was gradually induced by dehydration and high salinity stresses, but hardly increased under cold stress (Dubouzet et al., 2003). In wheat, Triticum aestivum L., the TaDREB1 gene was found to be induced by cold, salinity and drought and was classified into the DREB2-type transcription factors by phylogenetic analysis (Shen et al., 2003). A barley, Hordeum vulgare L., gene for the DREB2-type protein, HvDRF1, was reported to accumulate under drought and salt stresses and was involved in ABA-mediated gene regulation (Xue and Loveridge, 2004). However, the function of these genes in plants under stress conditions is still unclear.

In the field, heat stress and water deficit often occur in a parallel manner, especially in tropical areas. The effects of these stresses may cause oxidative damage of cellular components or result in the misfolding or denaturation of cellular proteins. Heat shock proteins (HSPs) are synthesized and accumulated in the heat shock response and are correlated with thermotolerance in the plant (Li and Werb, 1982). Heat shock proteins act as molecular chaperones by maintaining the homeostasis of protein folding and thus help to maintain the metabolic and structural integrity of cells (Sung and Guy, 2003; Vierling, 1991; Wang et al., 2004). Heat shock transcription factors (HSFs) have been found to primarily control the expression of HSP genes through the binding of the conserved heat-shock element (HSE) in the promoter region of these genes (Wu, 1995).

We previously isolated a DREB1-type transcription factor from maize (Zea mays; ZmDREB1A) by yeast one-hybrid screening (Qin et al., 2004). Analysis of gene expression, phylogenetic studies and functional characterization of ZmDREB1A in transgenic plants demonstrated that it encodes a typical DREB1-type protein in maize. In the current study, we were interested to determine if a dehydration and salt stress signal transduction pathway mediated by DREB2-type transcription factor(s) also exists in this agriculturally important plant. We isolated a DREB2-type transcription factor ZmDREB2A from maize and identified its two transcription forms, ZmDREB2A-L and ZmDREB2A-S. Overexpression of ZmDREB2A in Arabidopsis resulted in an enhanced tolerance to drought stress. Microarray analyses of the 35S::ZmDREB2A transgenic plants revealed the upregulation of genes not only encoding late embryogenesis abundant (LEA) proteins, but also genes related to heat shock stress, detoxification and seed maturation. Overexpression of ZmDREB2A also resulted in thermotolerance in transgenic plants, suggesting that ZmDREB2A has a dual function in the expression of genes responsive to water and heat stress.
Results

Isolation of ZmDREB2A and identification of its two transcription forms

To determine whether DREB2-type transcription factors exist in maize, we performed a tBLASTn search with the amino acid sequence of the ERF/AP2 DNA-binding domain of Arabidopsis DREB2A. As a result, a new maize sequence was identified and found to potentially encode an ERF/AP2 DNA-binding domain (accession no. AY108198; http://www.ncbi.nlm.nih.gov/BLAST/). Translation of the DNA according to the coding frame of the potential DNA-binding domain produced a putative protein containing 274 amino acid residues. Using a gene-specific primer pair designed from the AY108198 nucleotide sequence, we successfully obtained a 1034-bp fragment containing a coding sequence and a polyadenylation signal by using cold-, heat-, dehydration- or salt-treated maize cDNA samples. Multiple sequence alignment with DREB2A, OsDREB2A and other DREB2 proteins found that the putative protein did not contain a full DNA-binding domain and nuclear localization signal (NLS) which is normally found in the N-terminal of DREB proteins.

Subsequently six maize expressed sequence tag (EST) and mRNA sequences were identified in the UniGene database which potentially covered the 5'-end of the gene. Using a newly designed primer, in combination with the original AY108198 reverse primer, two different sized transcripts for this gene were amplified. These transcripts were subsequently named ZmDREB2A-L (accession no. AB218833) and ZmDREB2A-S (accession no. AB218832) according to their length. Both transcripts shared a 100% identity over a 1283-bp long nucleic acid sequence even on the 5'- and 3'-untranslated regions (UTRs). These transcripts only differed by 53 additional base pairs which were found in ZmDREB2A-L and lacking in ZmDREB2A-S (Figure 2c). ZmDREB2A-S was 1283 bp in length, encoding 318 amino acids, with a potential NLS and a typical ERF/AP2 DNA-binding domain (Figure 1a). In contrast, ZmDREB2A-L was 1336 bp long. Because of a premature termination caused by the 53-bp insertion and a frame shift ZmDREB2A-L encoded only 89 amino acids. This short peptide chain stopped before the ERF/AP2 DNA-binding domain and probably rendered it as a non-functional transcription form. Sequence alignment also showed that ZmDREB2A shared a homology not only within its DNA-binding domain but also in its C-terminal region with OsDREB2B (AK099221), HvDRF1 (AY223807) and PgDREB2A (AY829439) proteins (Figure 1, dotted line). Thus, we named the protein encoded by ZmDREB2A-S as ZmDREB2A. As expected, phylogenetic study of the ERF/AP2 proteins according to the previous classification of this superfamily (Dubouzet et al., 2003; Qin et al., 2004; Sakuma et al., 2002) assigned this protein to the DREB2 subgroup (Figure 1b). Two additional AP2/ERF transcription factors, DBF1 and DBF2, cloned in maize (Kizis and Pages, 2002), were classified to the A-4 and A-6 subgroup in DREB group proteins and share a high homology with RAP2.4 and TINY proteins, respectively.

Stress-inducible expression profiles of ZmDREB2A

The expression pattern of ZmDREB2A was examined in maize seedlings treated by cold (4°C), dehydration, salt (250 mM NaCl) and heat (42°C) stresses. Firstly, RNA gel blot analysis was used to study accumulation of ZmDREB2A mRNA in 7-day-old maize leaves, stems and roots, respectively. An accumulation of the ZmDREB2A mRNA was observed after 5 h of cold treatment in maize leaf, stem and root tissues. A relatively stronger induction was observed in root tissues during the cold treatment. Under dehydration stress, a rapid induction of ZmDREB2A was observed after 10 min which then remained unchanged in leaf tissue. In root tissue, ZmDREB2A expression was detected under normal conditions and was gradually upregulated. Under salt stress, ZmDREB2A was remarkably induced in root tissues up to 24 h, but in leaves and stems it was only slightly induced. Notably, a significant and transient induction of ZmDREB2A was observed with heat stress treatments in maize leaf, stem and root tissues. Subsequent to this induction, its mRNA rapidly became undetectable in stems 10 min after the induction and it gradually decreased in leaf and root tissues (Figure 2a). Exogenous application of ABA to maize seedlings did not result in the induction of ZmDREB2A (data not shown). Due to the small size difference of only 53 bp, these two fragments could not be clearly separated and distinguished by RNA gel blot analysis.

In order to verify the two kinds of transcription forms under stress conditions, a common pair of primers was designed according to the flanking sequence of the 53-bp insertion. These primers were then used in reverse transcription PCR (RT-PCR) with stress-treated maize cDNA templates. As shown in Figure 2(b), two kinds of transcript could be clearly identified under both heat and salt stresses. Under cold or dehydration stress ZmDREB2A-S was less induced than ZmDREB2A-L. Furthermore, we used quantitative real-time RT-PCR with two pairs of primers specific for either ZmDREB2A-S or ZmDREB2A-L in order to clarify the expression pattern of these two transcripts under different stresses (Figure 2c). Under cold stress, both kinds of transcripts displayed a similar pattern of induction, but ZmDREB2A-L appeared to be more abundant and increased to greater levels than ZmDREB2A-S. Under drought stress, both kinds of transcript appeared to be slightly increased. When the plants were treated by NaCl, both ZmDREB2A-L and ZmDREB2A-S were significantly upregulated to an equivalent amount. Upon exposure to a 42°C stimulus, both types of transcript displayed a transient induction pattern.
However, ZmDREB2A-S increased to a higher level within 10 min of the treatment (Figure 2d). Taken together, under normal conditions ZmDREB2A-L was present but ZmDREB2A-S transcripts were always undetectable. The expression of ZmDREB2A-S was only induced subsequent to stress treatments. Furthermore, the induction ratios of ZmDREB2A-S were always higher than ZmDREB2A-L under all stresses (Figure 2e). Quantitative analysis revealed that under heat or salt stress the amount of ZmDREB2A-S transcript was increased >100-fold compared with the non-stressed condition. On the other hand, the highest induction ratio of ZmDREB2A-L was obtained under cold or salt stress and was increased by only about 10-fold. These data seem to indicate that splicing mechanisms play an important role in regulating ZmDREB2A gene activity under stress conditions.

ZmDREB2A functions as a transcriptional activator and the region of amino acids 235–272 is important for its activation

Since only ZmDREB2A-S could be translated into a potential functional protein, in order to determine whether the ZmDREB2A protein was capable of transactivating DRE-dependent transcription in plant cells, we performed transactivation assays using Arabidopsis T87 protoplasts. A β-glucuronidase (GUS) gene driven by the trimeric 75-bp fragments containing the DRE sequence was used as a reporter (Figure 3a; Dubouzet et al., 2003). As expected, transfection with ZmDREB2A-L could not activate GUS gene expression because it did not encode a functional DRE-binding protein. In contrast, the relative GUS/LUC activity was distinctly upregulated when ZmDREB2A-S, DREB2A(DREB2A-wt), or the constitutive active form of DREB2A (DREB2A-CA), were transfected in T87 protoplasts. Furthermore, the ZmDREB2A protein exhibited a rather high transactivation activity, which led to a 40.46-fold increase of GUS/LUC activity in comparison with the vector-only transfection control. In a parallel experiment, DREB2A-wt and DREB2A-CA protein resulted in 5.73- and 22.34-fold increased GUS/LUC activity, respectively (Figure 3b). These data suggested that ZmDREB2A functioned as a stronger transactivator than Arabidopsis DREB2A.

Figure 1. Sequence alignment of ZmDREB2A and DREB2 proteins from different species and phylogenetic analysis of the AP2/ERF DNA-binding domain of ZmDREB2A in the AP2/ERF supertranscription factor family.
(a) The entire protein sequences for DREB2A (AB007790), DREB2B (NM111939), OsDREB2A (AF300971), OsDREB2B (AK099221), ZmDREB2A (AB218832), HvDRF1.1/1.3 (AY223807) and PgDREB2A (DQ227697) were aligned by the CLUSTAX program. The conserved amino acid residues among all sequences are highlighted with a black or grey background; nuclear localization signals, as predicted by PSORT (http://psort.nibb.ac.jp/) are double underlined; ERF/AP2 DNA-binding domains are underlined; and a conserved region in the potential activation domain among monocot DRBE2A proteins is indicated by a dashed line.
(b) A phylogenetic tree of the ERF/AP2 domains was constructed by CLUSTAX. The scale indicates branch lengths. A-1 to A-6 indicate subgroups proposed by Sakuma et al. (2002). The accession number of each appended protein is: LeCBF1 (AY034473), BNCBF7 (AF499032), BNCBF17 (AF499034), GndREB1A (AY321150), HvCBF1 (AF418204), ZmDREB1A (AF045481), HvcBF2 (AF442498), BCBF1 (AF298230), HvDRF1.1 (AY223807), ScCBF1 (AF370730), CBF3 (AF298231), TaDREB1 (AF303376), DBF1 (AF493800), DBF2 (AF493799), Glossy15 (U41466) and ids1 (AF048900). Genes belonging to the DREB subgroup are bold-faced; branches for genes from other monocot plants are designated in green. ZmDREB1A and ZmDREB2A were classified into the A-1 and A-2 subgroup, respectively. DBF1 (AF493800) and DBF2 (AF493799) from maize classified to the A-4 and A-6 subgroup and are underlined.
We performed mutational transactivation domain analysis for two reasons. First, we aimed to identify which region brought a high transactivation activity to the ZmDREB2A protein. We also wanted to determine whether the removal of any internal region would confer a higher transactivation activity to the ZmDREB2A protein. A series of C-terminal deletions of ZmDREB2A, ZmDREB2A (aa 1–272), ZmDREB2A (aa 1–253), ZmDREB2A (aa 1–208), ZmDREB2A (aa 1–191) and ZmDREB2A (aa 1–141) were constructed as effectors. As a result, removal of the zC-terminal end of the protein from aa 272 to aa 318 significantly reduced GUS/LUC activity. Further deletion from the C-terminal end to aa 236 completely abolished the ZmDREB2A transactivation capability by reducing GUS/LUC activity to 1.49-fold. As a positive control, a parallel experiment was conducted with ZmDREB2A protein and it always showed a high transactivation activity (Figure 3c). These data suggested that the C-terminal region from aa 236 to the C-terminal end was necessary for ZmDREB2A activity. In order to further localize its activation domain, an additional series of internal deletion fragments of ZmDREB2A was generated and constructed as effectors. Removal of the region of aa 236 to 272 greatly reduced its GUS/LUC activity.

Figure 2. Expression analysis of ZmDREB2A under various stress conditions.
(a) Seven-day-old maize seedlings were treated by cold (4°C), heat (42°C), dehydration or NaCl (250 mM) for the time course indicated above each line. Ethidium bromide-stained total RNAs were shown to indicate equal loading of samples.
(b) Seven-day-old maize seedlings treated by cold (4°C, 24 h), heat (42°C, 10 min), dehydration (1 h) and NaCl (250 mM, 24 h) were used for RNA preparation. As a negative control, dH2O was used as template in reverse transcription and PCR. Plasmids containing ZmDREB2A-L or ZmDREB2A-S were amplified by the same primers to indicate the length of the two kinds of transcripts.
(c) A schematic diagram to indicate the position of two pairs of sequence-specific primers designed accordingly for ZmDREB2A-L and ZmDREB2A-S.
(d) Root samples from 7-day-old maize seedlings treated by cold (4°C), heat (42°C), dehydration or NaCl (250 mM), for indicated time courses, were used for quantitative real-time RT-PCR analysis. The relative amount of two kinds of transcripts was calculated, when the amount of ZmDREB2A-L was defined as 1.0. (Bars indicate the standard error from three individual experiments.)
(e) Root samples from 7-day-old maize seedlings treated by cold (4°C), heat (42°C), dehydration or NaCl (250 mM), for the indicated time courses, were used for quantitative real-time RT-PCR analysis. The induction ratios of two kinds of transcripts were calculated, when the amount of each transcript under control condition was defined as 1.0 respectively. Bars indicate the standard error from three individual experiments.
showed such a critical effect to ZmDREB2A transactivation activity and these constructs still possessed at least 50% activity of the full-length protein of ZmDREB2A (Figure 3c). These data suggested that unlike Arabidopsis DREB2A, any internal deletions of ZmDREB2A could not enhance the protein transactivation activity, and the region of aa 236 to 272 might be essential for the high transactivation capability of ZmDREB2A. Interestingly, multisequence alignment of ZmDREB2A, OsDREB2B, HvDRF1.1, HvDRF1.3 and PgDRE-B2A proteins revealed that they all shared a high homology near this region (Figure 1a, dotted line); however, Arabidopsis DREB2A, DREB2B and rice OsDREB2A proteins did not.

Functional analysis of ZmDREB2A in planta

Previous studies showed that overexpressing Arabidopsis DREB2A protein hardly led to obvious morphological or physiological changes to transgenic plants (Liu et al., 1998). As a result, we were curious to determine whether ZmDREB2A functions directly in planta, or whether modification is necessary for its activation. In order to answer this question, we generated transgenic Arabidopsis overproducing this protein by using an enhanced CaMV35S promoter (Gallie et al., 1987; Mitsuhara et al., 1996). Fifty-one independent transgenic lines were obtained by
kanamycin selection and expression levels of ZmDREB2A in each T2 line were analyzed by RNA gel blot analysis. Transgenic plants displayed reduced rosette leaves and delay of bolting time in comparison to wild-type plants (transformed by the empty vector pBI121; Figure 4a, b). Reduction of rosette leaves and delay of bolting was dependent upon transgene expression levels (data not shown). This kind of phenotype was similar to those previously described for plants overexpressing DREB1A (Kasuga et al., 1999; Liu et al., 1998) and DREB2A-CA (Sakuma et al., 2006a,b). Three comparatively high-expression lines, 35S:ZmDREB2A-a, 35S:ZmDREB2A-b and 35S:ZmDREB2A-c, were chosen for further analysis. Since RD29A has been identified as a target gene of the DREB1A and DREB2A proteins (Liu et al., 1998; Sakuma et al., 2006a,b), its expression level was studied in three lines under normal, dehydration (5 h) and NaCl (250 mM, 5 h) conditions. Five micrograms of total RNA was loaded in each lane and ethidium bromide-stained total rRNAs were shown to indicate an equal loading of samples. Overexpression of ZmDREB2A was significantly higher in the three transgenic lines than in the wild type.

Figure 4. Phenotype, stress tolerance and gene expression analyses of the 35S:ZmDREB2A transgenic plants.
(a) Three-week-old 35S:ZmDREB2A plants of lines a, b, c and wild type (transformed by pBI121 empty vector) growing on selective germination medium (GM).
(b) Plants were transferred to pots and grown for two additional weeks.
(c) Ribonucleic acid gel blot analysis of transgene and some target gene expressions in the 35S:ZmDREB2A-a, 35S:ZmDREB2A-b, 35S:ZmDREB2A-c and wild-type plants under normal, cold (4 °C, 5 h), dehydration (5 h) and NaCl (250 mM, 5 h) conditions. Five micrograms of total RNA was loaded in each lane and ethidium bromide-stained total rRNAs were shown to indicate an equal loading of samples.
(d) Drought tolerance tests of the 35S:ZmDREB2A plants. 35S:ZmDREB2A-a, 35S:ZmDREB2A-b, 35S:ZmDREB2A-c and wild-type plants were investigated as described in the methods. Control, 4-week-old plants growing under normal conditions. Drought, water withheld from 4-week-old plants for 10 days; photographs were taken after rewatering for 7 days. Survival rates are indicated under the photographs. Means and SDs were obtained from three independent experiments. The plants with asterisks had significantly higher survival rates than the wild-type plants (t test, *P < 0.05, **P < 0.001).

Microarray analysis of plants overexpressing ZmDREB2A
We were interested in assigning a function to ZmDREB2A and to understand the relationship between alteration of gene expression and stress tolerance. We therefore employed microarray analysis for 35S:ZmDREB2A-a and
was also apparently higher than that of wild type. Since the transgenic lines and under stress conditions their expression analysis. As shown in Figure 4(c), all of these gene expres-
gene involved in metabolism,
means to validate the microarray results. Five LEA genes, B2A plants. One of them, stress were increased above sevenfold in the 35S:ZmDRE-
upregulated genes, 31 genes were shown to be inducible by ZmDREB2A, among the total of 152 transcription factor-like protein (AtHsfA3), contains two DRE promoters. The lack of the DRE sequence implied that these genes might be indirectly controlled by this protein. Notably, four genes that are responsive to heat shock stress were increased above sevenfold in the 35S:ZmDRE-
metabolites were also affected by overexpression of ZmDREB2A protein and it was also found to be upregulated 5.5-fold by ZmDREB2A referring to the microarray analysis the increased expression level of this gene was also confirmed by Northern analysis.

Stress-inducible expression of ZmDREB2A enhanced drought stress tolerance and avoidance of dwarfism
To minimize a negative effect of ZmDREB2A overexpression on plant growth, we made use of a stress-inducible RD29A promoter (Kasuga et al., 1999) and used this to overexpress ZmDREB2A in Arabidopsis. Under the control of RD29A promoter, ZmDREB2A was introduced into Arabidopsis and 62 antibiotic-resistant transgenic lines were obtained. Almost all of the RD29A::ZmDREB2A plants grew normally as wild type. Three lines, RD29A::ZmDREB2A-a, RD29A::ZmDREB2A-b and RD29A::ZmDREB2A-c, were chosen for further analysis. With the exception that the RD29A::ZmDREB2A-a plants showed a slightly reduced size at rosette stage (data not shown), no obvious growth retardation was observed for the transgenic lines (Figure 5a,c). Ribonucleic acid gel blot analysis confirmed that the stress-inducible RD29A promoter could effectively induce ZmDREB2A expression by cold and drought stresses (Figure 5b). To verify that the transgenic plants exhibited enhanced drought tolerance, we carried out a drought tolerance test as described above. As a result, 30% of wild-type plants survived after water was withheld for 10 days, and the survival ratio of the RD29A::ZmDREB2A-a, RD29A::ZmDREB2A-b and RD29A::ZmDREB2A-c plants was 96.3, 88.8% and 81.3% respectively (Figure 5e). Moreover, freezing tolerance tests were also carried out on these transgenic lines. Four-week-old plants were treated under −6°C for 30 h and survival rates were calculated after plants recovered under normal condition for 5 days. As a result, 37.8%, 35.6% and 33.3% of the RD29A::ZmDREB2A-a, RD29A::ZmDREB2A-b and RD29A::ZmDREB2A-c plants, respectively, could grow normally after recovery. In the same experiment, 28.3% of the wild-type plants survived (Figure 5d,f). No remarkable difference could be observed between these transgenics and wild type. Similar results were also obtained in the 35S:DREB2A-a, 35S:DREB2A-b and 35S:DREB2A-c plants (data not shown). These data indicate that ZmDREB2A apparently plays an important role in the plant’s tolerance of drought stress but not in freezing toler-

Overexpression of ZmDREB2A enhanced plant thermotol-
Expression analysis of ZmDREB2A showed that it was tran-
siently and significantly induced by heat stress, and the microarray result indicated it may upregulate expression of some heat shock-inducible genes in plants. To determine
<table>
<thead>
<tr>
<th>AGI code</th>
<th>Description</th>
<th>Median of fold change</th>
<th>Inducibility</th>
<th>DREB2A</th>
<th>No. of DREs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT3G53040</td>
<td>Late embryogenesis abundant protein - like</td>
<td>22.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G52690</td>
<td>Late embryogenesis-abundant protein, putative</td>
<td>21.1</td>
<td>D</td>
<td>S</td>
<td>–</td>
</tr>
<tr>
<td>AT2G36640</td>
<td>Late embryogenesis abundant protein (AtECP63)</td>
<td>19.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G15670</td>
<td>LEA76 homologue type2</td>
<td>18.0</td>
<td>D</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT2G40170</td>
<td>ABA-regulated gene (ATEM6)</td>
<td>14.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT5G06760</td>
<td>Late embryogenesis abundant protein LEA like</td>
<td>8.6</td>
<td>D</td>
<td>S</td>
<td>–</td>
</tr>
<tr>
<td>AT1G01470</td>
<td>LEA14</td>
<td>8.3</td>
<td>D</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>AT2G35300</td>
<td>Similar to late embryogenesis abundant proteins</td>
<td>8.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G32560</td>
<td>Late-embryogenesis abundant protein, putative</td>
<td>7.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G52560</td>
<td>Chloroplast-localized small heat shock protein, putative</td>
<td>18.6</td>
<td>–</td>
<td>–</td>
<td>H</td>
</tr>
<tr>
<td>AT5G03720</td>
<td>Heat shock transcription factor -like protein (AtHsfA3)</td>
<td>14.2</td>
<td>–</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>AT3G17790</td>
<td>Acid phosphatase type 5</td>
<td>7.5</td>
<td>–</td>
<td>–</td>
<td>H</td>
</tr>
<tr>
<td>AT3G12580</td>
<td>Heat shock protein 70</td>
<td>7.1</td>
<td>D</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>AT1G49570</td>
<td>Peroxidase, putative</td>
<td>13.3</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G48130</td>
<td>Peroxiredoxin</td>
<td>7.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT5G40420</td>
<td>Oleosin</td>
<td>26.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G27660</td>
<td>Oleosin</td>
<td>15.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G01570</td>
<td>Oleosin</td>
<td>13.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT5G39150</td>
<td>Germin-like protein</td>
<td>8.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT4G36880</td>
<td>Cysteine proteinase</td>
<td>22.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G33540</td>
<td>Serine carboxypeptidase, putative</td>
<td>15.1</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G43780</td>
<td>Serine carboxypeptidase II, putative</td>
<td>8.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G54940</td>
<td>Cysteine proteinase</td>
<td>7.4</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT4G37990</td>
<td>Cinnamyl-alcohol Dehydrogenase ELI3-2</td>
<td>49.2</td>
<td>D</td>
<td>S</td>
<td>–</td>
</tr>
<tr>
<td>AT1G09350</td>
<td>Putative galactinol synthase (AtGolS3)</td>
<td>18.7</td>
<td>D</td>
<td>S</td>
<td>C</td>
</tr>
<tr>
<td>AT5G03860</td>
<td>Malate synthase-like protein</td>
<td>18.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT5G42800</td>
<td>Dihydroflavonol 4-reductase</td>
<td>10.0</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT2G38830</td>
<td>Putative nonspecific lipid-transfer protein</td>
<td>8.7</td>
<td>D</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G55940</td>
<td>Phosphinositide specific phospholipase C, putative</td>
<td>8.5</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT1G34580</td>
<td>Monosaccharide transporter, putative</td>
<td>7.9</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT4G22870</td>
<td>Leucoanthocyanidin dioxygenase, putative</td>
<td>7.7</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>AT3G10450</td>
<td>Putative glucose acyltransferase</td>
<td>7.6</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

- **LEA protein**: LEA proteins are a class of proteins that are induced during the late stages of embryogenesis and are important for seed germination and seedling growth under stress conditions.
- **Heat shock responsive**: These proteins are induced under heat stress conditions.
- **Detoxification**: These proteins are involved in detoxification processes.
- **Seed protein**: Seed proteins are involved in seed development and germination.
- **Protein fate**: These proteins are involved in the degradation and recycling of proteins.
- **Enzymes in metabolism**: These proteins are involved in various metabolic processes.
- **Unknown protein**: The function of these proteins is not yet known.

*Descriptions as given by The Institute for Genomic Research database.

aMedian values of fold change (Intensity of ZmDREB2A OX / vector) from two experiments.

bData on inducibility were base on microarray analysis (Seki et al., 2002; Maruyama et al., unpublished data). D, drought (2 or 10h); S, high salinity (2 or 10h); C, cold (2 or 10h); H, heat (0.5 or 5h); –, no induction.

cGenes upregulated by DREB2A-CA above 2-time (without restriction of intensity) (Sakuma et al., submitted).

dDRE sequences (A/GCCGAC) observed in 1000 nucleotides existing upstream of the full-length cDNA clones (http://rarge.gsc.riken.go.jp/). Numbers indicated the copies of DRE sequence. "()" indicated the full-length cDNA information of this gene was not available, and number of DRE sequence was decided from 1000 nucleotides upstream of start codon (http://www.arabidopsis.org/). "-" indicated no DRE sequence found in the sequence.
whether transgenic plants overexpressing ZmDREB2A had an improved tolerance to heat stress, we investigated the thermotolerance of the 35S:ZmDREB2A plants. Six-day-old plants germinating on selective agar plates were transferred to two layers of paper which was pre-moistened by liquid germination medium to avoid a dehydration effect. After conditioning the plants under 22°C for 2 days, wild-type and transgenic plants were subjected heat shock treatment at 44°C or 45°C. As shown in Figure 6(a) and (b), three transgenic lines, 35S:ZmDREB2A-a, b, c, and wild-type plants could grow very well under 22°C, but when the plants were exposed to 44°C for 1 h, about 85% of wild-type plants survived. The survival ratio of 35S:ZmDREB2A-a, 35S:ZmDREB2A-b and 35S:ZmDREB2A-c was 100%, 96% and 95% respectively. When the plants were exposed at 45°C for 1 h, only 2.4% of the wild-type plants survived, whereas 82% of 35S:ZmDREB2Aa; 48% of 35S:ZmDREB2Ab and 18% of 35S:ZmDREB2Ac survived during the subsequent 2-week

Figure 5. Phenotype and stress tolerance of the RD29A:ZmDREB2A transgenic plants. (a) Photographs of wild-type and transgenic plants of RD29A:ZmDREB2A-a, RD29A:ZmDREB2A-b and RD29A:ZmDREB2A-c. The plants were grown on GM selective agar plates for 3 weeks and then transferred to soil and grown for 2 weeks. (b) Ribonucleic acid gel blot analyses of ZmDREB2A expression under normal conditions (control), cold (4°C, 5 h) and dehydration (5 h). Five micrograms of total RNA was loaded in each lane and ethidium bromide-stained total RNAs were shown to indicate an equal loading. (c) Inflorescence height of 35-day-old 35S:ZmDREB2A-a, 35S:ZmDREB2A-b, RD29A:ZmDREB2A-a, RD29A:ZmDREB2B-a and RD29A:ZmDREB2A-c plants. Means and SDs were obtained from 20 plants for each line. The plants with asterisks were significantly different from the wild-type plants (t-test, *P < 0.05, **P < 0.001). (d) Drought and freezing tolerance of the RD29A:ZmDREB2A transgenic plants. RD29A:ZmDREB2A-a, RD29A:ZmDREB2A-b, RD29A:ZmDREB2A-c and wild-type plants were investigated as described in the methods. Control, 4-week-old plants growing under normal conditions. Drought, water withheld from 4-week-old plants for 10 days; photographs were taken after rewatering for 7 days. Freezing, 4-week-old plants exposed to a temperature of −6°C for 30 h; photographs were taken after freeze-stressed plants were returned to 22°C for 5 days. (e, f) Survival rates. Means and SD were obtained from three independent experiments. Plants with asterisks had significantly higher survival rates than the wild-type plants (t-test, *P < 0.05, **P < 0.001).
recovery at 22°C. The plants which survived appeared to be developmentally delayed in comparison with the plants growing under normal conditions. The level of thermotolerance was observed to be consistent with the expression level of ZmDREB2A. Referring to microarray results, some heat shock-inducible genes were chosen for Northern blot analysis and were tested in both transgenic and wild-type plants. AtHSFA3, a heat shock transcription factor-like gene, was undetectable under non-stressed conditions but induced by exposure to 37°C for 5 h in wild type. In all three transgenic lines, this particular gene became constitutively expressed under non-stressed conditions and its expression level was actually higher than in the wild-type plants after heat shock. Heat shock protein (HSP) genes, such as HSP70, HSP 22.0, HSP 17.6, AtHSP23.6-mito and Chloroplast-localized small HSP were also expressed under normal conditions in the 35S:ZmDREB2A-a plants, whereas in the wild-type plants their expression was undetectable (Figure 6c). The enhanced thermotolerance in transgenic plants was relevant to HSP gene expression. However, expression levels of the HSP genes under non-stressed conditions remained apparently lower than those detected after heat shock treatment. These

Figure 6. Thermotolerance and heat shock responsive gene expression in the 35S:ZmDREB2A and wild-type plants.
(a) Six-day-old plants germinated on selective GM plates were transferred onto filter papers moistened with 4 ml GM in Petri dishes. After being maintained at 22°C for 2 days, plants were immediately exposed at 44°C or 45°C for 1 h and then returned to 22°C for recovery. Photographs show the representative results of plants after two further weeks of cultivation with liquid GM.
(b) Plant survival ratio of thermotolerance of (a). Mean and SD were obtained from three independent experiments. The plants with asterisks had significantly higher survival rates than the wild-type plants (χ²-test, *P < 0.05, **P < 0.001).
(c) Ribonucleic acid gel blot analyses of heat shock-inducible gene expression under normal conditions (control), heat shock (37°C, 1 h or 37°C, 5 h), NaCl (250 mM 5 h) and dehydration (5 h) in wild-type and transgenic 35S:ZmDREB2A-a, b, c plants. Five micrograms of total RNA was loaded in each lane and ethidium bromide-stained total rRNAs are shown to indicate equal loading of samples.
data imply that the production of HSP prior to heat stress may be important to the increased thermostolerance of transgenic plants. Additionally, we could not observe inductions of these HSP genes under NaCl (5 h) or dehydration (5 h) treatment in the wild-type plants (Figure 6c), implying that although the ZmDREB2A protein could affect expression of HSP genes, a heat shock signal was required for highly activating the expression of HSP genes.

Discussion

Unlike DREB1/CBF-type transcription factors, the functional regulation of DREB2-type transcription factors seems to be more variable and complicated. Expression of intact Arabidopsis DREB2A does not activate downstream genes under normal growth conditions. The DREB2A protein, unlike DREB1A, was considered to require post-translational modification in order for it to become activated (Liu et al., 1998; Sakuma et al., 2006a,b). Similar to the results from Arabidopsis, overexpression of the rice ortholog OsDREB2A is also not sufficient to activate downstream gene expression (Dubouzet et al., 2003). As a matter of fact, there has not been any clear evidence directly demonstrating to date that intact DREB2-type proteins function in plant stress responses. In this study, we described the isolation and characterization of a DREB2-type transcription factor from maize, named ZmDREB2A. We identified two kinds of transcripts for this gene which were designated as ZmDREB2A-L and ZmDREB2A-S. Overexpression of ZmDREB2A-S showed an enhanced drought stress tolerance and microarray analyses revealed that many stress-inducible genes were upregulated in the transgenic plants under non-stressed control conditions. These data clearly indicate that intact ZmDREB2A can function as a transcriptional activator and does not require post-translational modification. They contrast with the previously characterized DREB2A proteins both in Arabidopsis (DREB2A) and in rice (OsDREB2A).

ZmDREB2A-L contained a 53-bp insertion in contrast with ZmDREB2A-S. This insertion resulted in a frame shift and a premature stop in translation and only encoded 89 amino acids. Barley HvDRF1 and wheat TaDRF1 have a similar alternative splicing pattern and produce three kinds of transcript forms, two of which could be functionally translated into a DREB2-type transcription factor (Xue and Loveridge, 2004). In the case of maize, ZmDREB2A possesses two kinds of transcript forms, with only one functional form. We searched the maize database. All EST or mRNA sequences sharing homology with ZmDREB2A were analyzed, but none of them presented a new kind of transcript. Only ZmDREB2A-L could be found, and prior to this report the ZmDREB2A-S transcript had never been previously identified. Interestingly, the position and structure of this 53-bp fragment in ZmDREB2A-L resembled E2 of HvDRF1.2.

When ZmDREB2A-S was overexpressed in plants, the transgenic plants showed dwarfism and improved tolerance to drought stress. However, transgenic plants overexpressing Arabidopsis DREB2A did not show any obvious phenotypic changes or improvement of tolerance to dehydration stress (Liu et al., 1998). Recent results showed DREB2A to be unstable under non-stressed conditions, and modification of this protein may be necessary to stabilize it (Sakuma et al., 2006a,b). Using genETYX 6.0 software, we searched for a region rich in proline, glutamic acid, serine and threonine residue (PEST) sequence but we were unable to clearly detect a similar sequence in the ZmDREB2A protein (Rechsteiner and Rogers, 1996). Moreover, transactivation domain analysis did not find any negative regulation domain in ZmDREB2A. Unlike Arabidopsis DREB2A protein, ZmDREB2A may be stable without modification in cells even under unstressed conditions. Stress-induced splicing of the ZmDREB2A mRNA implies that regulation of ZmDREB2A activity may happen before translation. Overexpression of ZmDRE2A-L in plants might be helpful for exploring the mechanism of how a stress signal generates the functional form of ZmDREB2A-S.

Microarray analyses revealed that nine genes encoding LEA proteins were upregulated more than sevenfold in two independent transgenic lines. Seven of these genes contained the DRE sequence(s) in their promoters and four of them were identified to be stress inducible. Late embryogenesis abundant proteins are produced in abundance during the late stages of embryo development (Hughes and Galau, 1989) and many of them are induced by cold, osmotic stress and exogenous applications of ABA in vegetative tissues (Welin et al., 1994). Although the precise function of these hydrophilic LEA proteins is still unknown, several reports have suggested that LEA proteins play a role in counteracting the crystallization of cellular components or the irreversibly damaging effects of increasing ionic strength which is induced by water deficit (Ingram and Bartels, 1996; Thomashow, 1999; Zhu, 2001). Overexpression of DREB1A, DREB2A-CA or the activated form of AREB1 (Fujita et al., 2005; Maruyama et al., 2004; Sakuma et al., 2006a) in Arabidopsis resulted in upregulation of some LEA gene expression and all these transgenic plants displayed an improved tolerance to drought stress. These observations imply that LEA proteins do function in tolerance of water deficit.

Freezing tolerance tests showed that neither RD29A::ZmDREB2A plants (Figure 5c) nor 35S::ZmDREB2A plants showed an improved tolerance to freezing stress (data not shown). According to microarray analyses, this may be due to low induction of several cold-inducible genes such as KIN1, KIN2, COR15A and COR15B in the transgenic plants. Likewise, overexpression of Arabidopsis DREB2A-CA also failed to improve freezing tolerance in transgenic plants (Sakuma et al., 2006a,b). We have shown that DREB1A and
DREB2A exhibit different DNA-binding specificities by using promoter analysis of the DREB1A- and DREB2A-regulated genes and gel mobility shift assay of both recombinant proteins. DREB1A has the highest affinity to A/GCCGACNT, whereas DREB2A preferentially binds ACCGAC. It is likely that this difference controls the induction of different downstream genes between DREB1A and DREB2A (Sakuma et al., 2006a,b). Although the DREB2A-regulated genes have important roles in tolerance of drought stress, they are not sufficient to withstand freezing stress. This kind of DNA-binding preference was also observed for the ZmDREB2A protein. Among 44 upregulated genes, 24 genes contained at least one DRE sequence in their promoters. Eighteen out of these 24 genes (75.0%) contain ACCGAC sequence(s) in the promoters, whereas 10 genes (41.7%) have GCCGAC sequence(s). Moreover, we also analyzed the promoter region for the top 100 upregulated genes and found that the ACCGAC sequence was the most significant.

Expression analysis of ZmDREB2A showed that this gene was transiently and significantly induced by heat stress. Microarray analysis revealed that four heat shock-related genes were upregulated more than sevenfold (Table 1) in the 35S:ZmDREB2A plants. Among the upregulated genes, a gene encoding a heat shock transcription factor, AtHsfA3 (At5g03720) was undetectable under normal conditions and was induced by heat stress treatment in the wild-type plants (Figure 6c). In contrast, in the 35S:ZmDREB2A plants, AtHsfA3 was constitutively expressed under normal conditions (Figure 6c). Promoter analysis indicated that this gene contains two DRE sequences in its promoter region, suggesting that AtHsfA3 is a direct target of ZmDREB2A. The altered expression of AtHsfA3 in the 35S:ZmDREB2A plants may result in some HSP gene expression even under non-stressed condition (Figure 6c). However, the enhanced expression level of the HSP genes under non-stressed conditions was comparably lower than that after heat shock treatment. Similar results have been reported using transgenic plants overexpressing other HSF genes such as HSF1 and HSF3. These data suggest that specific activation mechanisms of HSF proteins may exist under heat stress conditions. AtHsfA3 is class A HSF, based on the presence of the conserved DNA-binding domain and the adjacent oligomerization domain HR-A/B (characterized by the heptad pattern of hydrophobic residues; Nover et al., 2001).

In Arabidopsis, 21 HSF have been identified, which exceeds the number in vertebrates (four HSFs), Drosophila (one HSF) and yeast (one HSF and three HSF-related proteins). This observation implies that a more complex HSF regulation system exists in plants. Heat shock transcription factors are the essential transcription factors for the heat induction of many HSP genes, but their regulation of the heat shock response is complicated and not yet understood. Recently, it was reported that DREB2A-CA overexpression also enhanced thermotolerance in transgenic Arabidopsis (Sakuma et al., 2006a,b), supporting the notion that DREB2-type transcription factors function in the heat stress response.

Ectopic expression of ZmDREB2A also upregulated some genes that function in detoxification and seed maturation, but none of them contained a DRE sequence in their promoter (Table 1). These data indicate that the expression of these genes might be indirectly affected by the ZmDREB2A protein. Detoxification enzymes are thought to play roles in the protection of cells from reactive oxygen species (ROS), such as hydrogen peroxide (H$_2$O$_2$). H$_2$O$_2$ is generated in response to various stimuli, such as dehydration, cold, wounding, UV irradiation and challenge with a elicitor or pathogen (Neill et al., 2002a,b). Recently, there is increasing evidence for considerable interlinking between the responses to heat stress and oxidative stress (Davletova et al., 2005; Panchuk et al., 2002). It is possible that the genes related to detoxification may play important roles in the acquisition of stress tolerance not only to drought but also to heat shock in the ZmDREB2A transgenic plants.

In conclusion, the activity of a maize DREB2-type transcription factor ZmDREB2A is regulated by a stress-induced splicing of its mRNA. Constitutive or stress-inducible expression of ZmDREB2A resulted in an improved stress tolerance not only to drought but also to heat shock in plants. Microarray analyses of transgenic Arabidopsis plants overexpressing ZmDREB2A revealed that in addition to genes encoding LEA proteins, some genes related to heat shock, detoxification and seed maturation were upregulated. We conclude that ZmDREB2A may have a dual function in mediating the expression of genes responsive to both water stress and heat stress.

Experimental procedures

Plant materials

Plants (Arabidopsis thaliana ecotype Columbia) were grown on germination medium (GM) agar plates for 3 weeks, as previously described (Yamaguchi-Shinozaki and Shinozaki, 1994). Stress treatments for RNA gel blot analysis and stress tolerance tests were also performed as previously described (Liu et al., 1998). Arabidopsis T87 suspension-cultured cells were maintained as described previously (Takahashi et al., 2001).

Cloning and primers sequences

We performed a TBLASTN search within the GenBank nucleotide database. maize EST and mRNA sequences were obtained from the UniGene database. Primers for ZmDREB2A cloning: AV108198-ATG-for, ATGAGGGAAAAGGGGGGCCTG; AV108198-Long-rev (cover 3'-UTR), AAAAGCAAGCACTCTTTTAT; 16320845-Long-for (cover 5'-UTR), GGCTTATCGACTCCAAGAAAC. Primers for RT-PCR: forward, TTTGGATCCGGTCTATCGACTCCA; reverse, GATGACAGCTGCCACTGAGAT. Primers for quantitative real-time RT-PCR: ZmDREB2A-L-156F, GTGCTGTGGTGCATGGT; ZmDREB2A-L-128R, CTAGGAGCTACCTCGATCT; ZmDREB2A-S-24F, GCAGCCGGGAAGGAAGAA; ZmDREB2A-S-90R, GATGACAGCTGCCACTGAGAT.
Primers for maize 18s rRNA, forward, AAACGGCTACCACATCCAAG; reverse, CCTCCAATGGATCCCTGGTA.

Transient expression experiments

Effector and reporter plasmids used in the transient transactivation experiment examining C-terminal and internal deletion mutants of ZmDREB2A were constructed as described previously (Liu et al., 1998). Isolation of Arabidopsis T87 cell protoplasts and polyethylene glycol-mediated DNA transfection were performed as previously described (Sato et al., 2004).

Plant transformation

Plasmids used for the transformation of Arabidopsis were constructed with the coding region of the ZmDREB2A cDNA. The coding region fragment was cloned into a multi-cloning site of the pBI121 vector (Liu et al., 1998) or the pBI29AP-Not vector (Kasuga et al., 1999) and the plasmids were introduced into Agrobacterium tumefaciens C58. Plants were transformed as described previously (Liu et al., 1998).

Microarray analysis

Total RNA was isolated with TRIzol reagent (Invitrogen, http://www.invitrogen.com/) from 3-week-old plants having pBI121 or overexpressing ZmDREB2A. Preparations of fluorescent probes, microarray hybridization and scanning have been described previously (Fujita et al., 2005; Seki et al., 2002).

RNA gel blot analysis

Total RNA was extracted with TRIzol reagent and procedures for RNA gel blot analysis were performed as described previously (Yamaguchi-Shinozaki and Shinozaki, 1994).

Quantitative real-time RT-PCR analysis

For quantitative real-time RT-PCR, cDNA was synthesized from total RNA by using Revertra IIc. The reverse transcription reaction in 20 μl and 0.2 μl cDNAs was applied for PCR analysis. Real-time PCR was performed on a Light Cycler (Roche Diagnostics, http://www.roche-diagnostic.com/) with random primers according to the manufacturer’s instructions. One microgram of total RNAs was used for the reverse transcription reaction in 20 μl and 0.2 μl cDNAs for PCR analysis. Real-time PCR was performed on a Light Cycler (Roche Diagnostics, http://www.roche-diagnostic.com/) by using an SYBR Premix Ex Taq kit (Takara, http://www.takara-bio.com/) according to the manufacturer’s instructions. Known concentrations of pBluescript SK plasmids carrying ZmDREB2A-L or ZmDREB2A-S was used as standards in real-time RT-PCR to quantify the actual amount of amplified ZmDREB2A-L and ZmDREB2A-S transcripts. The amounts of template cDNA that were used in each PCR reaction were corrected by the results of quantification of 18S rRNA. Three replicate PCR amplifications were performed for each sample.

Drought stress tolerance of transgenic plants

Plants were grown in Petri dishes containing GM selective agar medium for 3 weeks and were then transferred to 8-cm pots filled with vermiculite. Plants were subsequently grown for one more week before exposure to drought stress. Drought stress was imposed by withholding water for 10 days in a growth chamber (22°C, 50–60% relative humidity, continuous light) until the lethal effect of dehydration was observed for the majority of wild-type plants. After rewatering for 5 days, the number of plants that survived and continued to grow was counted.

Acknowledgements

We thank E. Ohgawara, K. Amano, K. Yoshiwara and H. Sado for their excellent technical support and M. Toyoshima for skilful editorial assistance. Feng Qin was supported by a visiting research fellowship from the Japan International Research Center for Agricultural Sciences. This work was supported in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (BRAIN), Core Research for Evolutional Science and Technology, and a project grant from the Ministry of Agriculture, Forestry and Fisheries, Japan.

Supplementary material

The following supplementary material is available for this article online:

Table S1. Thirty-one heat stress inducible genes were 3-time upregulated in 35S:ZmDREB2A plants. A complete data set is available at ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) under accession number E-MEXP-819. This material is available as part of the online article from http://www.blackwell-synergy.com.

References

